Lie groupoids in classical field theory I: Noether’s theorem
نویسندگان
چکیده
منابع مشابه
The Muhly–Renault–Williams theorem for Lie groupoids and its classical counterpart
A theorem of Muhly–Renault–Williams states that if two locally compact groupoids with Haar system are Morita equivalent, then their associated convolution C-algebras are strongly Morita equivalent. We give a new proof of this theorem for Lie groupoids. Subsequently, we prove a counterpart of this theorem in Poisson geometry: If two Morita equivalent Lie groupoids are s-connected and s-simply co...
متن کاملClassical Field Theory on Lie Algebroids: Multisymplectic Formalism
The jet formalism for Classical Field theories is extended to the setting of Lie algebroids. We define the analog of the concept of jet of a section of a bundle and we study some of the geometric structures of the jet manifold. When a Lagrangian function is given, we find the equations of motion in terms of a Cartan form canonically associated to the Lagrangian. The Hamiltonian formalism is als...
متن کاملAnnihilation Theorem and Separation Theorem for Basic Classical Lie Superalgebras
In this article we prove that for a basic classical Lie superalgebra the annihilator of a strongly typical Verma module is a centrally generated ideal. For a basic classical Lie superalgebra of type I we prove that the localization of the enveloping algebra by a certain central element is free over its centre.
متن کاملLie Groupoids as Generalized Atlases
Starting with some motivating examples (classsical atlases for a manifold, space of leaves of a foliation, group orbits), we propose to view a Lie groupoid as a generalized atlas for the “virtual structure” of its orbit space, the equivalence between atlases being here the smooth Morita equivalence. This “structure” keeps memory of the isotropy groups and of the smoothness as well. To take the ...
متن کاملRiemannian metrics on Lie groupoids
We introduce a notion of metric on a Lie groupoid, compatible with multiplication, and we study its properties. We show that many families of Lie groupoids admit such metrics, including the important class of proper Lie groupoids. The exponential map of these metrics allows us to establish a linearization theorem for Riemannian groupoids, obtaining both a simpler proof and a stronger version of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2018
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2018.03.015